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Abstract. We discuss the notion of an inner function for spaces of analytic functions in multiply

connected domains in C, giving a historical overview and comparing several possible definitions. We

explore connections between inner functions, zero-divisors for Hardy spaces and Bergman spaces, and

weighted reproducing kernels. After recording some obstructions and negative results, we suggest

avenues for further research and point out several open problems.

1. Introduction

In this paper, we study certain special classes of bounded functions in multiply connected do-

mains: inner functions, furnishing isometric or contractive divisors for analytic function spaces. The

problems we are interested in have been explored extensively in the context of function spaces in

the unit disk, going back to the early 20th century. Recall that a sequence

Z = {zj}∞j=1 ⊂ G

is said to be a zero set for a Banach space X of analytic functions in a domain G ⊂ C if there exists

a function f ∈X such that f(zj) = 0 for all j = 1, 2, . . . and f(z) 6= 0 for z ∈ G \ Z. We adhere to

the usual convention of taking multiplicities into account by allowing repetitions in Z. It is often

desirable to be able to “factor out” potential zeros of a given function f ∈ X , and, if possible,

to describe the generator(s) of zero set-based subspaces of X that are invariant with respect to

multiplication by functions analytic in a neighborhood of G, or with respect to bounded analytic

functions.

To give a concrete example and to set the scene for what will follow, let us briefly revisit the

well-understood case of the Hardy spaces Hp in the unit disk D. For p > 0 fixed, the space Hp

consists of analytic functions f : D→ C satisfying the growth restriction

‖f‖pp = lim
r→1−

1

2π

∫ π

−π
|f(reiθ)|pdθ <∞.

When p ≥ 1 this furnishes a norm that turns Hp into a Banach space. Consider a sequence {zj}
of points in D \ {0} that satisfies the Blaschke condition

∑∞
j=1(1− |zj |) < ∞. Then {zj} is a zero

set for the Hardy space and it is well-known (see [18, 22, 36]) that one can associate a bounded

analytic function BZ , called a Blaschke product, to such a sequence, and this function acts as an

isometric divisor for any function f ∈ Hp that vanishes on Z. That is, ‖f/BZ‖Hp = ‖f‖Hp if

f(zj) = 0, j = 1, 2, . . .. In particular, Blaschke products are examples of inner functions in the
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Hilbert space H2, a class of functions that admits several useful characterizations. The most direct

condition for f ∈ H2 to be inner is that |f(eiθ)| = 1 at almost every point on the unit circle

T = {|z| = 1}. Equivalently, a function f ∈ H2 is inner if ‖f‖ = 1 and the orthogonality condition

〈f, zjf〉H2 =
∫
T f(ζ)ζjf(ζ)|dζ| = 0 is satisfied for j = 1, 2, . . .. Yet another approach via extremal

problems is quite helpful. Namely, if Z is a H2-zero set, then the aforementioned Blaschke product

solves the extremal problem sup{Ref(0) : ‖f‖H2 ≤ 1, f(zj) = 0, j = 1, 2, . . .}
More recently, a largely parallel theory of zero-divisors was developed for the Bergman space in the

disk in the 90s, see [31, 21]. In this case, zero divisors G are no longer isometric; rather, dividing

a function by an associated zero divisor decreases the Bergman norm. Nevertheless, contractive

divisors are inner functions for the Bergman space A2 and such functions can again be characterized

in terms of orthogonality conditions and as solutions to extremal problems [21, 31].

The situation in the multiply connected setting is considerably more complicated for several rea-

sons. For instance, the harmonic conjugate of a harmonic function in a multiply connected domain

is not in general single-valued, and constructions relying on explicit computations with orthonormal

bases or reproducing kernels become significantly more challenging. One idea that comes to mind

for reducing the multiply connected setting to the simply connected one is to introduce nice cuts

that avoid zero sets, but this cannot work. Indeed, if we construct a contractive or isometric divisor

for the Bergman or Hardy cases, respectively, in the resulting simply connected domain this will,

of course, provide the needed norm estimates, but though analytically continuable across the cuts,

we will in general be left with a multi-valued function in the original domain.

The purpose of the present work is to survey the current state of affairs for domains of multiple

connectivity, as we understand them, and to present some new contributions as well as possible

directions for further investigations.

We begin by setting down some notation. Let Ω be a bounded finitely connected domain in C,

with boundary given by

∂G = Γ =
n⋃
j=1

γj ,

where each γj is a rectifiable Jordan curve. We reserve γ1 for the outer boundary curve. We denote

harmonic measure for Ω with fixed base point z0 ∈ G by ω = ω(z0, ·, Ω), and we write ωj for the

harmonic measure of each of the boundary components γj , that is, for j = 1, . . . , n,

∆ωj = 0 in G, and ωj ∣∣
γk

= δjk.

We sometimes use the shorthand notation ωz0 to denote the measure ω(z0, ·,G). If the γj are smooth

we have the representation

dω(z0, ·, Ω) = − 1

2π

∂g

∂n
(·, z0)ds,

where g(·, z0) denotes the Green’s function of Ω with pole at z0, ∂/∂n is the derivative in the

direction of the outward normal of Γ, and ds denotes arclength measure.

We shall make use of approximations of a given domain G: a regular exhaustion is a sequence

{Gj}∞j=1 of n-connected domains with analytic boundaries {Γj}, such that z0 ∈ Gj , Gj ⊂ Gj+1, and

G =
⋃∞
j=1 Gj . See [22, 23] for background material on harmonic measure and related topics.
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Figure 1. A smoothly bounded multiply connected domain Ω with basepoint z0

and outer boundary curve γ1.

We are interested in certain scales of Banach spaces of analytic functions in multiply connected

domains: Hardy, Bergman, and Smirnov spaces. For a fixed p > 0, the Hardy space Hp(G) consists

of analytic functions f : Ω→ C with the property that, for a regular exhaustion {Gj} of G,

(1) ‖f‖pHp(Ω) = lim
j→∞

∫
Γj

|f(ζ)|pdω(z0, ζ,Ωj) <∞.

When p ≥ 1, this expression defines a norm. As usual, f∗ will be taken to denote the boundary

values of the function f initially defined in G. Membership of a function in Hp(G) is preserved

under change of basepoint z0. See [22, Chapters 3 and 4] and [18] for background information on

Hardy norms, including proofs of existence of boundary values ω-almost everywhere. We remark

that Hp(G) can also be defined in terms of harmonic majorants [50, 52]: f ∈ Hp(G) if there is a

harmonic function u : G → R satisfying

|f(z)|p ≤ u(z), z ∈ G.

This definition lends itself to extensions to arbitrary domains in C, and to Riemann surfaces [33].

We shall also need some close relatives of Hardy spaces, namely the Smirnov spaces. We say that

an analytic function f : G → C belongs to the Smirnov class Ep(G), p > 0, if

(2) ‖f‖pEp(G) = lim
j→∞

∫
Γj

|f(ζ)|pds <∞.
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Here, we are integrating with respect to arclength measure ds on Γj . More generally, we write

Ep(ρds) for Smirnov spaces associated with a non-negative weight function ρ : G → [0,∞). It

can be shown that the modulus of any function f ∈ Hp(G) (p ≥ 1) can be recovered from its

non-tangential boundary values using Poisson integrals [22, 18],

f(z) =

∫
Γ
f∗(ζ)dω(z, ζ,G).

A Smirnov function f ∈ Ep(G), p ≥ 1, can be represented as a Cauchy integral of its non-tangential

boundary values f∗,

f(z) =
1

2π

∫
Γ

f∗(ζ)

ζ − z
dζ, z ∈ G.

We remark that Hp(G) and Ep(G) coincide as sets if Γ is smooth, but are in general different in

rough domains. See, for instance, [18, 45, 46, 47], for more in-depth discussions of Hardy and

Smirnov spaces.

We will find it useful to also consider the Nevanlinna class N(G) and the Smirnov class N+(G).

We recall that an analytic function f : Ω→ C is said to belong to the Nevanlinna class if

lim sup
j→∞

∫
Γj

log+ |f(ζ)| dω(z0, ζ,Ωj) <∞,

or, equivalently, if log+ |f | has a harmonic majorant in G. If f has the additional property that the

family {∫
Γj

log+ |f(ζ)|dωj(z0, ζ,Ωj)

}
j

is uniformly integrable with respect to harmonic measure, we say that f belongs to the Smirnov

class N+(G). See [38, 47] for more on this. Note, cf. [47], that N ⊃ N+ ⊃ Hp, and that N ⊃ Ep

for all p > 0. In certain domains with rough boundaries, so-called non-Smirnov domains, Ep is in

general not contained in N+. For p < q, we have Hp ⊃ Hq and Ep ⊃ Eq.
Nevanlinna functions (and hence Hardy functions) have good non-tangential limit properties, but

this is lost when we move to Bergman spaces [4, 8]. For p ≥ 1, the Bergman space Ap(G) is the

Banach space of analytic functions f in G satisfying the norm boundedness condition

(3) ‖f‖pAp(G) =

∫
G
|f(z)|pdA(z) <∞.

Here, dA = π−1dxdy denotes normalized area measure in the plane. In this note, we shall mostly

deal with the Hilbert spaces H2(G) and A2(G).

We mention in passing that it is possible, and sometimes useful, to define function spaces in a

multiply connected domain G in terms of uniformizing maps by viewing the unit disk D as a covering

surface. See [22] for more on this point of view; we shall not use this approach in the present paper.

We denote the collection of rational functions whose poles are off G = G ∪Γ by R(G). It is known

[18, 22, 4] that R(G) is dense in all the function spaces we consider, provided the boundary Γ is

smooth enough. We shall also consider the set A(G) consisting of analytic functions in G that are

continuous on G; we note that R(G) is uniformly dense in A(G), again, see [22, Chapter 4].
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The purpose of this note is to explore the notion of inner function and zero divisor for spaces of

analytic functions in a multiply connected domain G. Suppose we are given a zero set for a function

space X in G, say, the Hardy or the Bergman space. Does there exist a function G in X that

divides out zeros, that is to say, if f ∈X vanishes on Z, do we have the estimate ‖f/G‖X ≤ ‖f‖X
(or even equality)? If this does not hold, can we hope for a norm comparison involving a universal

constant that only depends on G and X ?

Assuming such functions exist, do they belong to a natural class of inner functions, defined in

terms of some suitable extremal problem or in terms of orthogonality conditions?

As we shall see, these questions are subtle and we are not able to give complete answers to all of

them. Several difficulties arise when we leave the class of simply connected domains, both conceptual

and technical. A fundamental problem, as was mentioned earlier, is that of harmonic conjugation:

given a harmonic function h in G whose properties we understand, such as the Green’s function, we

often wish to form an analytic function f = h+ ih̃, where h̃ denotes the harmonic conjugate of h. If

G is simply connected, this is straight-forward, but in the multiply connected setting, the harmonic

conjugate is no longer single-valued in general: h̃ typically has periods around the holes of G. For

instance, h = log |z| is harmonic in any annulus {z ∈ C : r < |z| < 1}, but h̃ = arg z has period

2π around the inner circle rT. Hence, we are faced with the challenge of removing such periods

through appropriate modifications without losing whatever desirable properties f = h + ih̃ may

possess. Another notorious obstruction is that certain canonical objects like reproducing kernels

are no longer zero-free in the multiply connected setting, unlike in the disk. Typically, the higher

the connectivity, the more zeros appear in the kernel function, and this means that care has to be

taken when dividing by kernels.

At the technical level, it is often useful to be able to perform explicit computations with orthonor-

mal bases and to have closed expressions for canonical objects like Poisson kernels and reproducing

kernels. In the disk, this is often possible, and formulas for reproducing kernels and single-point di-

visors are attractive. By contrast, even in very simple multiply connected domains like the annulus

or circular domains, explicit expressions are often lacking, or require a more cumbersome analysis

of special functions.

To keep technicalities to a minimum, we shall usually assume that the boundary curves Γ =
⋃
j γj

are analytic. The kinds of questions we consider in this paper could also be posed for function spaces

on Riemann surfaces. There, yet another technical issue arises from topological considerations

involving the handles of the surfaces. We shall mostly avoid this level of generality, and refer the

reader to [58, 56, 33, 42, 43] for guidance to the Riemann surface setting.

2. Definitions and basic properties of inner functions in multiply connected

domains

We shall now review several possible definitions of “inner functions” in a multiply connected

domain, and compare and contrast these definitions. We begin with some historical remarks. In the

context of the unit disk, classicalHp-inner functions have played a prominent role in most treatments

of function spaces in the unit disk, going back to the factorization theorems of R. Nevanlinna and

V.I. Smirnov (see [18, 22, 31, 24]). For subclasses of the Nevanlinna class in the multiply connected
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setting, the survey by S.Ya. Khavinson and G.Ts. Tumarkin [48] is a good starting point. The

extension of the notion of Hardy spaces to multiply connected domains and Riemann surfaces can

be traced back to Parreau [50] and Rudin [52]. These spaces have subsequently been studied by

numerous authors, see for instance the references in [22, 38, 39]. A first construction of “Blaschke

products” in a finitely connected domain was suggested by Zmorovich [60], and the convergence of

these products was established by Tamrazov [54]. (These works, as well as several imporant papers

by Dunduchenko and Kas’yanyuk [16, 17], were published in Ukrainian or Russian and unfortunately

did not become widely known in the West.) A convenient construction of an analog of the Schwarz

kernel, and consequently of “Blaschke products” was presented by Coifman and Weiss [13]. Further

generalizations, which will be useful in what follows, were obtained by D. Khavinson [38, 39] (see

also the references therein), Kuzina [49], and S.Ya. Khavinson [42, 43], the latter in the context of

finite Riemann surfaces.

For Bergman spaces in general domains in C we refer the reader to [8, 4]. The term “inner

function” in Bergman spaces in the unit disk was coined by Korenblum, following breakthroughs by

Hedenmalm and by Duren, Khavinson, Shapiro, and Sundberg. These more recent developments

are detailed in the books [31, 21]; more recent results on Bergman spaces in multiply connected

domains can be found in [1]. As far as the authors are aware, a concept of inner functions for

Bergman spaces in multiply connected domains has not been developed in a systematic way so far.

As was mentioned earlier, in the classical setting of the Hardy space of the unit disk, a function

f ∈ H2(D) is said to be inner (or H2- inner to be precise) if |f∗(ζ)| = 1 for almost every ζ ∈ T.

Equivalently, f ∈ H2(D) can be declared to be inner precisely if

(4) ‖f‖H2(D) = 1 and 〈zjf, f〉H2(D) = 0 for j = 1, 2, . . . .

See [6, 7] and the references therein for systematic treatments of this approach to inner functions

for general Hilbert function spaces, as well as [12] and references cited there for the more general

Banach space case.

In the multiply connected setting, the following definition has evolved over the years (cf. [22,

Chapter 4] and the papers listed above).

Definition 2.1. Let Ω ⊂ C be a bounded domain whose boundary consists of finitely many analytic

curves γ1, . . . , γn. We say that f ∈ H2(Ω) is inner if

‖f‖H2(G) = 1 and |f∗(ζ)|∣∣
γj

= cj for j = 1, . . . , n

where c1, . . . , cn are positive constants.

We review a construction (see [56, 38]) that lends some credence to the idea that the above is a

natural generalization of inner function.

Example 2.2 (Generalized Blaschke products). Let z0 ∈ Ω be fixed, and let g(z, z0) be Green’s

function for G with pole at z0. Suppose Z = {zj}∞j=1 is a sequence of points in Ω such that the

generalized Blaschke condition [22, 13, 38]

∞∑
j=1

g(zj , z0) <∞
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is satisfied: this means that Z is a zero set for H2(G).

Let p(z) = g(z, z0) + ig̃(z, z0) be the multi-valued analytic completion of Green’s function. It is

natural to try to exponentiate p to get an inner function, but in order to obtain a single-valued

analytic function, we need to cancel the periods of g̃. As is explained in [38], there exists a non-

unique choice of constants λ1, . . . , λn ∈ R such that the generalized Blaschke product

(5) BZ(z) = exp

− ∞∑
j=1

p(zj , z0) +
n∑
k=1

λk(ωk + iω̃k)


is a single-valued analytic function. Furthermore, see [38, 39], we have BZ(zj) = 0 for j = 1, 2, . . .,

and

|BZ | = cj = eλj ω − almost everywhere on γj .

Similarly, see [39], one can construct singular inner functions.

Example 2.3 (Singular inner functions). Let µ be a non-positive measure with µ ⊥ ωz0 . We can

construct a singular inner function by setting

(6) Sµ(z) = exp

 1

2π

∫
Γ

(
∂g

∂nζ
(z, ζ) + i

∂g̃

∂nζ
(z, ζ)

)
dµ(ζ) +

n∑
j=1

λj(ωj(z) + iω̃j(z))

 ,
by selecting constants λ1, . . . , λn in such a way that Sµ becomes single-valued.

We again have |Sµ(ζ)| = cj almost everywhere with respect to ωz0 , but now Sµ is a non-vanishing

inner function in G.

It can be shown [13, 38] that any inner function in H2(G) can be written as a product of a

Blaschke product and a singular inner function, and this decomposition is unique up to invertible

factors. We caution that there are non-constant invertible inner functions in the multiply connected

setting: the functions zk (k 6= 0) in the annulus {r < |z| < 1} furnish examples of this.

Using the generalized inner functions from Definition 2.1, one can formulate an extension of

Beurling’s theorem on invariant subspaces ofH2(G), once the notion of “z-invariant” is appropriately

modified. This provides some justification for calling functions satisfying Definition 2.1 H2(G)-inner.

We shall discuss this in Section 4.

We will now investigate to what extent the definition of inner function in Definition 2.1 squares

with an inner product condition as in (4). In a Hilbert function space X in the multiply connected

setting, a naive approach would be to replace the orthogonality condition (4) with the condition

that

(7) ‖f‖X = 1 and 〈f, rf〉X = 0, r ∈ R(G) \ spanC{1}.

In this paper, we shall focus on the cases X = H2(G) and X = A2(G), the Hardy and Bergman

spaces respectively.

We begin with the simplest possible case.

Example 2.4. Let Ω = {z : r < |z| < 1} be an annulus centered at the origin. Since Ω has analytic

boundary, an equivalent norm for H2(Ω) is obtained by replacing harmonic measure by arclength

measure ds, and considering L2(Γ, ds)-integrals.
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In order for f to be inner in the sense of Definition 2.1, we must have that |f |2 ∈ span {ω1, ω2},
where ω1, ω2 are the harmonic measures on the outer and inner circles, that is,

ω1(z,T,G) =
log |z|r
log 1

r

and ω2(z, rT,G) =
log |z|
log r

.

We wish to determine {ω1, ω2}⊥ in L2(Γ, ds). But the functions
∂ωj
∂n , where n is the outward

pointing normal, are also locally constant on γj since ωj are radial. Hence {ω1, ω2}⊥ coincides with{
∂ω1
∂n ,

∂ω2
∂n

}⊥
, which is equal to span {Re zn : n ∈ Z}. Since |f |2 is already real-valued, we are led

to the following proposition.

Proposition 2.5. Let Ω = {z ∈ C : r < |z| < 1}. The function f ∈ H2(Γ, ds) is inner in the sense

that f is constant a.e. with respect to arc-length on T and on rT = {z ∈ C : |z| = r} if and only if∫
Γ
|f |2 znds = 0 n ∈ Z \ {0},

or, in other words, if

〈znf, f〉 = 0 n ∈ Z \ {0}.

Inspired by this simple example, let us return to the general setting. Unfortunately, the results

are somewhat disappointing.

Proposition 2.6. Let Ω ⊂ C be a bounded domain with boundary Γ = ∪nj=1γj, where each γj is a

closed analytic curve.

Then if f ∈ H2(Γ, ds) satisfies the orthogonality condition (7), we have

|f(z)|2 = 1 +

n−1∑
j=1

λj
∂ωj
∂n

,

for some real constants λ1, . . . , λn−1.

In particular, a function satisfying condition (7) is not necessarily locally constant on Γ and hence

not necessarily inner in the sense of Definition 4.

Proof. Suppose f ∈ H2(G) satisfies (7). Then

(8)

∫
Γ
(|f |2 − 1)r(z)ds = 0

for any function r ∈ R(G). Since |f |2 is real, this implies that (|f |2 − 1) ⊥ Re[R(G)], the set of real

parts of elements of R(G).

However, the description of measures Γ-orthogonal to Re[R(G)] is well-known, see [22, Theorem

2.3]. From the proof, we extract that the n linearly independent measures spanning Re[R(G)]⊥ are

of the form
∂ωj
∂n

ds, j = 1, . . . , n− 1.

Thus, in light of (8) we conclude that |f(ζ)|2 = 1 +
∑

j λj
∂ωj
∂n (ζ), as desired. �

Examining the proof of Proposition 2.6, it becomes apparent that the simple orthogonality con-

dition in the case of H2(Γ, ds) of the annulus is a result of the fact that the functions ∂ωj/∂n
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are themselves constant on the boundary components. Bearing this in mind, and working out the

argument for the standard Hardy space H2(G) of the annulus (with harmonic measure instead of

arclength), we find that f ∈ H2(G) satisfies the orthogonality condition (7) in L2(Γ, dωz0) precisely

if

|f(ζ)|2 = 1 + λj

∂ωj
∂n (ζ)
∂g(ζ,z0)
∂nζ

, ζ ∈ Γ, j = 1, 2.

for some real λ1, λ2. This identity does not imply that |f(ζ)|∣∣∣Γ is locally constant on boundary

components. Thus, even in this case being inner is not the same as satisfying the orthogonality

condition if we insist upon the standard norm involving ωz0 .

Switching to the standard Hardy space H2(G) and reworking the proof above, we conclude that

f ∈ H2(G) satisfying the orthogonality condition implies that |f |2 is a linear combination of Schottky

functions [24, Chapter 6],

|f(ζ)|2 = 1 +
n−1∑

1

λjsj(ζ), where sj =
∂ωj
∂nζ

(ζ)
/ ∂g
∂nζ

(ζ, z0).

We take a brief detour here to point out a connection with an interesting and non-trivial question

in free boundaries, known as the Vekua problem [5]. This is the overdetermined problem of charac-

terizing the domains Ω for which there exists a non-zero solution to the overdetermined boundary

value problem (j = 1, 2)

(9)

{
∆u = 0 in Ω

u = cj , ∂u/∂n = dj on γj
,

where {cj}2j=1 and {dj}2j=1 are constants. It has been shown [40, Theorem 5.5] that among doubly

connected domains satisfying mild smoothness conditions, only annuli admit solutions. It was

conjectured in [40] that in domains of connectivity three and higher, the Vekua problem has no

solutions at all.

Returning to our previous discussion, we note that the computation carried out for arclength

measure in the annulus is valid only in that setting, and fails in all other doubly connected domains.

Turning to Bergman spaces Ap(G) in multiply connected domains, we do not know of any working

definition of inner function that is as simple as that in Definition 2.1 or the orthogonality condition

(4), while at the same time leading to a wide enough class of functions to act as zero-divisors and

generators. Indeed, in the now classical setting of Ap(D), the analogous requirement that |G(ζ)| = 1

for almost every ζ ∈ T does not characterize a satisfactory class of “inner functions”. Instead, the

usual approach to Bergman-inner functions in the disk is in terms of certain extremal problems.

We shall discuss this approach next.

3. Inner functions, extremal problems, and weighted reproducing kernels

Another way of identifying inner functions, or at least Blaschke products (in Hardy spaces) and

contractive divisors (in Bergman spaces), is to view them as solutions to certain extremal problems.

For a fixed basepoint z0 ∈ G and a point z1 ∈ G \ {z0} we pose the following two extremal problems
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for X = H2(G) or A2(G):

(10) sup {|f(z0)| : f(z1) = 0, ‖f‖X = 1}

and

(11) inf {‖g‖X : g(z0) = 1, g(z1) = 0} .

These problems are actually equivalent since if F is an extremal function for (10), then G(z) = F (z)
F (z0)

is an extremal problem for (11).

We now carry out a standard variational argument. Consider functions f ∈ A(G) such that

f(z0) = 0. Then if G is an extremal function for (11), and λ ∈ C, then the function Gλ := G·(1+λf)

is a contender. In particular, Gλ(z1) = 0, and Gλ(z0) = 1. Then since G is extremal for (11), we

have that

‖G‖2X ≤ ‖Gλ‖2X
= 〈G(1 + λf), G(1 + λf)〉X
= ‖G‖2X + 2Re 〈Gλf,G〉X +O

(
λ2
)
.

Therefore we must have 〈Gf,G〉X = 0, since otherwise we could find a λ such that ‖Gλ‖2X < ‖G‖2X .

Taking any F ∈ A(Ω), and letting f := F (z)− F (z0), we arrive at the condition

(12) 〈G (F − F (z0)) , G〉X = 0.

Without loss of generality we may also assume that ‖G‖X = 1.

We now specialize to the case X = H2(G). Then (12) implies that, for all F ∈ A(Ω),

(13)

∫
Γ
F |G|2 dωz0 = F (z0).

Hence, we deduce that ∫
Γ

(
|G|2 − 1

)
udωz0 = 0

for all u = ReF , where F ∈ A(Ω). This requirement unfortunately does not imply that the

extremal G is locally constant on boundary components: as in the previous section, we only deduce

that |G|2 − 1 can be written as a linear combination of n− 1 generically non-constant functions.

We now turn to the Bergman space, that is, the case X = A2(G). The condition (12) now implies

that ∫
G
(|G(z)|2 − 1)u(z) dA(z) = 0,

again for all u = ReF , where F ∈ A(Ω). Superficially, this condition looks very similar to the

definition of a Bergman-inner function in the setting of the unit disk, see [31, Chapter 3] and [21].

The difference between the simply connected and multiply connected cases is that in the simply

connected case, the space Harm(G) of functions harmonic in G and continuous in G simply consists

of real parts of functions in A(G), whereas in the multiply connected case Harm(G) = Re[A(G)]⊕N ,

where again dim N = n − 1. Unlike in the Hardy case, a concrete description of the space N is

not immediately apparent for general G. In the the annulus G = {r < |z| < 1}, one checks that

N = span{log |z| − c0}, where c0 = 2π
∫ 1
r r log rdr. In general, N is given by an n− 1 dimensional
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subspace defined in terms of projections of harmonic measures. More specifically, we have

|G(z)|2 −H(z, z0) ⊥L2(G) ReA(G)

where H(z, z0) denotes the reproducing kernel for L2-integrable harmonic functions in G. (We have

H(z, z0) = 2Rek(z, z0)− 1, where k denotes the usual Bergman kernel, see [21].) Thus, we have the

representation

(14) |G(z)|2 = H(z, z0) +
n−1∑
j=1

λjνj(z) + ∆φ(z),

where νj(z) = ωj(z) − PA2(G)ωj(z), PA2(G) : L2(G) → Re(A2(G)) being the orthogonal projection,

and φ ∈ W 1,2
0 (G). (Recall that, by Weyl’s lemma, the L2 closure of ∆φ, φ ∈ C∞0 (G), the Sobolev

space W 1,2
0 (G), is precisely the annihilator of square integrable harmonic functions in Ω, see [19, 21].)

At the moment it is not clear to us, however, how to extract a more concrete representation (e.g.

in terms of an area-orthonormal basis) for |G| from this.

To summarize, we have found that solutions to the extremal problems (10) and (11) do not

in general have constant modulus on γj , and consequently, are not H2(G)-inner in the sense of

Definition 2.1. For the Hardy space at least, we have an explicit representation of the defect space

as the span of Schottky functions,

N = Harm(G)	L2(G,dω) Re[A(G)] = span{sj , j = 1, . . . , n− 1},

but in the Bergman space, a representation of N = Harm(G) 	L2(G) Re[A(G)] that is equally

transparent is not currently available to us.

As was mentioned in Section 2, an important reason for studying inner functions is that they arise

as generators of invariant subspaces (at least in instances where these invariant subspaces are singly

generated). This is the content of Beurling’s invariant subspace theorem for Hp. Obtaining such

generators by solving extremal problems was the approach taken by Hedenmalm in his identification

of contractive divisors for A2, and these contractive divisors were later identified as Bergman-inner

functions. While solutions to extremal problems in multiply connected domains need not be inner

functions in the sense of Definition 2.1, we have not yet explained how extremals relate to generators

of invariant subspaces, in particular in H2(G), where an analog of Beurling’s theorem is known to

hold. We will return to this discussion in Section 4.

First, we need to achieve a better understanding of solutions to extremal problems in the multiply

connected setting. A basic obstruction is the presence of extraneous zeros: these are points in G\{z1}
where G, the solution to the extremal problem (10), vanishes. Even in radially weighted Bergman

spaces in the unit disk, extraneous zeros may be present [32, 57], and in the multiply connected

setting, the Bergman kernel function itself has zeros whose number depend on the connectivity of

G.

Let us discuss reproducing kernels next. Since point evaluation is always a bounded linear func-

tional for the Hardy space H2(G) and the Bergman space A2(G), making these spaces reproducing

kernel Hilbert spaces, we might hope to use kernel methods to study inner functions.
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We start, first, with the Smirnov space E2(Ω), although we do assume that Γ is smooth. It is

know, see [41, p. 35], that the reproducing kernel for E2(Ω) is given by the expression

(15) K(z, ζ) = F ∗ζ (z)L(z, ζ), ζ ∈ Ω.

Here, F ∗ζ is the extremal function in the Schwarz lemma problem

sup
{∣∣f ′(ζ)

∣∣ : f ∈ H∞ (Ω) , ‖f‖∞ ≤ 1
}

;

the function F ∗ is also known as the Ahlfors function [41, 4]. The second factor in (15) is given by

L (z, ζ) =
1

2π

Φ (z, ζ)

z − ζ
,

where

Φ (z, ζ) =

√
1− 2πi (z − ζ)2 ϕ∗(z),

is single-valued in G (see [41, p.39]), and ϕ∗ is the extremal function for the dual problem

inf
ϕ∈E1(Ω)

∫
Γ

∣∣∣∣ 1

2πi (z − ζ)2 − ϕ(z)

∣∣∣∣ ds(z).
It is known (cf. [41, Thm 8.1]) that F ∗ζ has n zeros in Ω, including one at ζ. It is also known

that Φ has no zeros in Ω (again, cf. [41, pp. 39-40]). It follows then, by the definitions of F ∗ζ and

L that for any fixed ζ ∈ Ω, the kernel K(z, ζ) has precisely n − 1 zeros in Ω. We now prove the

following proposition.

Proposition 3.1. For any non-negative ρ having ρ ∈ L1(Γ, ds) and log ρ ∈ L1(Γ, ds), and any fixed

ζ ∈ Ω, the reproducing kernel kρ(z, ζ) of E2(ρds) has precisely n− 1 zeros in Ω.

Proof. First assume that ρ = |g|2, where g ∈ A(Ω) does not vanish in Ω. Then, trivially, we have

kρ(z, ζ) =
K(z, ζ)

g(z)g(ζ)
.

Indeed, for any f ∈ H∞,∫
Γ
f(ζ)kρ(z, ζ)ρ(ζ)ds(ζ) =

∫
Γ
f(ζ)

K(z, ζ)

g(z)g(ζ)
g(ζ)g(ζ)ds(ζ)

=
1

g(z)
f(z)g(z)

= f(z).

Since H∞ is dense in E2(ρds), this proves the claim.

Now, by [39, Thm. 4], any function on Γ satisfying ρ(ζ) ≥ 0 for ζ ∈ Γ and having ρ, log ρ ∈ L1(Ω)

is equal almost everywhere to |g|2 for some function g ∈ H2(G) that does not vanish in Ω. The

same argument as above then applies. Moreover, it is clear then that for any fixed z0 ∈ Ω, the

reproducing kernel kρ(z, z0) of E2(ρds) has precisely n− 1 zeros in Ω. �

Remark 3.2. Using more recent results in [42, 43], we believe that the above proposition can be

generalized to finite Riemann surfaces.

It is known, see for instance [25], that the reproducing kernel for the Bergman space A2(G) has

exactly the same number of zeros as the critical points of the Green’s function: in an n-connected
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domain, there are n − 1 zeros. If we consider a weight ρ = |g|2 with g ∈ A2(G) non-vanishing in

G, exactly the same argument as above extends Proposition 3.1 to weighted Bergman spaces with

such weights. Of interest to us is what happens when the function g is allowed to have zeros in G.
In that case, we have the following proposition.

Proposition 3.3. For any logarithmically subharmonic weight of the form ρ = |g|2 with g analytic

in G, and any fixed z0 ∈ G, the reproducing kernel kρ(z, z0) of A2
ρ(G) has precisely n− 1 zeros in G,

where n is the number of connected components of Γ.

Proof. As mentioned, when g is nonvanishing in G, we can extend Proposition 3.1 mutatis mutandis.

Suppose now that g does vanish in G (but not on Γ), and let z1, . . . , zm be the zeros of g in G. For

ε > 0, let ∆j,ε be the disk of radius ε centered at zj , and let

Gε = G \ ∪mj=1∆j,ε

be the domain obtained by excising these disks. This domain then is n + m-connected and so

its unweighted Bergman kernel kε(z, z0) has n + m − 1 zeros in Gε. Now the weight ρ = |g|2 is

nonvanishing in Gε, and so the kernel of the weighted Bergman space A2
ρ(Gε) is given by

kρ,ε(z, z0) =
kε(z, z0)

g(z)g(z0)
,

and hence has m+ n− 1 zeros in Gε.
Letting ε→ 0, we have that

(16) kρ,ε(z, z0)→ kρ(z, z0), z /∈
m⋃
j=1

∆j,ε.

Since G 3 z 7→ kρ(z, z0) is an analytic function, it must be the case that m zeros of kε(z, z0) tend

to the zeros of g as ε → 0 in order to cancel out the poles at z1, . . . , zm. But then kρ(z, z0) has

n + m − 1 −m = n − 1 zeros, as claimed, and in light of (16) and Hurwitz’s theorem, these zeros

coincide with those of the unweighted reproducing kernel k(z, z0). �

The argument here is in the spirit of [44]. The question of whether the number of zeros for kρ is

n− 1 for any logarithmically subharmonic weight ρ (see [31, 21] for a definition) is still open.

We return to solutions of the extremal problem (10) and draw some conclusions from the facts

about reproducing kernels established above. First, let Bz1 denote a “Blaschke factor” for G with a

single zero at z1, that is, Bz1 maps G to a disk with n− 1 concentric circular slits removed and has

Bz1(z1) = 0, see [13, 38]. Then one checks that the extremal function for (10) can be realized as

G(z) = Bz1(z)k|Bz1 |
2
(z, z0),

where k|Bz1 |
2

denotes the normalized reproducing kernel in a space with weight given by |Bz1 |2. In

the case of the Bergman space, we weight area measure by |Bz1 |2, while in the case of the Hardy

space we consider the norm inherited from L2(Γ, |Bz1 |2dωz0), and in both cases, ‖k|Bz1 |2‖X = 1.

Now, by Propositions 3.1 and 3.3, the weighted k|Bz1 |
2

and the unweighted kernel k(·, z0) have the

same extraneous zeros. This property is inherited by the extremal function G. Moreover, the fact

that extraneous zeros of extremals coincide with those of the reproducing kernel remains unaffected
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if we replace the problem (10) by the more general problem

sup {|f(z0)| : f(zj) = 0 for zj ∈ Z and ‖f‖X = 1} ,

for a Hardy or Bergman-zero set Z.

4. Inner functions and invariant subspaces

We have seen that translating the usual orthogonality conditions and extremal problems that

provide equivalent definitions for inner functions in simply connected domains do not immediately

lead to inner functions in the sense of Definition 2.1. We now review some of the good properties

of functions that are inner in the sense of Definition 2.1, and we also make some new observations.

We follow Royden [51] and say that a closed subspace S ⊂ H2(G) is fully invariant if rS ⊂ S

whenever r ∈ R(G). Zero-based subspaces

MZ = {f ∈X : f(zj) = 0, zj ∈ Z}

are prime examples of such fully invariant subspaces.

We now state the analog of Beurling’s theorem for multiply connected domains. This theorem

traces its origins back to the 1960s [55, 56, 26], and has inspired numerous subsequent papers, see

for instance [59, 3, 11]. Further operator-theoretic developments can be found in [2].

Theorem 4.1. Let M 6= {0} be a closed fully invariant subspace of H2(G). Then there exists an

inner function G such that M = GH2(G).

While proofs of Theorem 4.1 can be found in several cited sources, the argument proceeds along

slightly different lines. Following the streamlined proof in Hoffman [36], we make systematic use

of factorization of Hardy functions, making the proof quite similar to that for the disk case. As in

[51], the proof is readily extended to cover invariant subspaces in Hp, p ≥ 1. (In fact, extensions

to the case p < 1 are also possible after a suitable modification of the notion of invariant subspace,

but we shall not pursue this here.)

Proof. Define the function

G0 = PM [1],

where PM : H2(G)→M denotes the orthogonal projection onto the subspace M . Pick z0 ∈ G that

is not a joint zero of all elements on M . Then, for all r ∈ A(G) having r(z0) = 0,

0 =

∫
Γ
(1−G0)G0rdωz0 = −

∫
Γ
|G0|2rdωz0 .

Set G = G0/‖G0‖H2(G). Then G ∈M , and moreover∫
Γ
(|G|2 − 1)rdωz0 = 0 for r ∈ A(G).

It remains to prove that G generates M . By Proposition 2.6,

(17) |G(ζ)|2 = 1 +
n−1∑
j=1

λjsj(ζ),
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where sj are the Schottky functions for G. By [38, Section 4] (see also [13]), we have

G = Iu,

where I is inner, and u is non-vanishing in G, and analytic in G in light of (17). Hence u is outer,

with at most finitely many zeros on Γ, and hence u is cyclic. (This follows from an argument that

shows that any rational function with no zeros in G and with at most finitely many zeros on Γ is

cyclic; we sketch the argument. First, we establish cyclicity for functions of the form f = (z−ζ0) ·v,

ζ0 ∈ γ1 fixed and v non-vanishing on G, in a smaller Hardy space on int(γ1). In that case, as in

the unit disk, we can find a sequence of polynomials {pn} such that pnf − 1→ 0 in L2(γ1), and by

subharmonicity, the same holds for other boundary components, and this then shows that (z− ζ0)v

is cyclic. Finally, we use that a finite product of cyclic multipliers is cyclic to extend the argument

to the case of finitely many zeros on Γ.)

Now suppose f ∈M and f ⊥ GH2(G) and recall that G = PM [1]‖G0‖. Then∫
Γ
fGrdωz0 = 0, r ∈ A(G),

and for r ∈ A(G) with r(z0) = 0, we also have∫
Γ
Gfrdω = 0.

Together, this implies that fG ⊥ (A(G) ⊕ A0(G)). Then, since the Schottky functions sj are

real-valued on Γ, we deduce that

(18) Gf ∈ S = spanC{s1, . . . , sn−1}

and also

Gf ∈ S .

Since |G| is real-analytic on Γ, and elements of S are real-analytic on the boundary, the function

|f | is also real-analytic.

Consider the factorizations

G = IGFGQG and f = IfFfQf ,

where the functions IG and If are multi-valued functions, while FG and Ff are single-valued outer

factors, analytic across Γ in light of (17) and (18), and QG and Qf are “period removers” of the

form Q = exp[
∑n−1

j=1 λj(ωj + iω̃j)], for suitably chosen λj . From (18), we have

Gf = (If/IG)QfQG FGFf

and since Qf , QG and FG, Ff are real-analytic on Γ, and FG and Ff are single-valued, (If/IG)QfQG
is single-valued and real-analytic near Γ. This in turn implies that log+ |If |−log+ |IG| is real-analytic

on Γ as well, and, by uniqueness for Smirnov classes [38, 47], the singular measures appearing in If

and IG coincide.

We now conclude from this that f and G have the same zeros in a neighborhood of Γ. This

means we can write

QfIf = IGQGB0,



16 BÉNÉTEAU, FLEEMAN, KHAVINSON, AND SOLA

where B0 is an inner factor with finitely many zeros in G, analytic up to the boundary. Hence

(19) f = IGQGQfFfB0 = (G/FG)QfFfB0.

Note that the factor B0Qf is necessarily single-valued since the other factors are single-valued.

Interchanging the roles of f and G shows that B0 is in fact trivial, and hence f ∈ [G] by (19). Since

also f ⊥ [G], we have f = 0, and this finishes the proof. �

Let us return to solutions to extremal problems and examine how they relate to the inner-function

generators of invariant subspaces in Theorem 4.1. If M ⊂ H2(G) is an invariant subspace, we can

pose the extremal problem

sup{|f(z0)| : f ∈M , ‖f‖H2(G) = 1};

here, we are assuming that z0 /∈ ZM = {z ∈ G : f(z) = 0 ∀f ∈M }. The extremal function solving

this problem can now be written

Ge(z) = G(z)kM (z, z0),

with kM denoting the reproducing kernel for H2(G) with weight |G|2, where G generates M . Note

that Ge ∈M by Theorem 4.1. As was explained in the previous section, the zeros of kM coincide

with the zeros of k, the Szegő kernel, which is reproducing for H2(G). Let

Z = {w1(z0), . . . , wn−1(z0)} ⊂ G

denote these zeros, and let GZ ∈ H∞(G) be a fixed inner function with these zeros. In other words,

|GZ(ζ)|∣∣
γj

= cj , we have GZ(wk) = 0 and GZ has no other zeros in G, and the singular inner factor

of GZ is identically equal to 1. After dividing Ge by GZ , we obtain another generator for M , and

thus arrive at an alternative proof of Theorem 4.1.

We turn to the problem of dividing out zeros. Note that, unlike in the disk, we cannot hope for

isometric divisors in the case of the Hardy space H2(G). Indeed, if G were an isometric divisor for

H2(G), then we would have |G| = 1 on Γ. If G ∈ C(G) is not constant, then G′(ζ) 6= 0 on Γ, and

hence ∂(argG)/ds > 0. Hence argG increases by an integer multiple of 2π along each γj , and the

argument principle then implies that G has at least n zeros. But this makes it impossible for G to

be a divisor for invariant subspaces associated with fewer than n zeros in G.

We recall that a contractive divisor associated with a zero set Z for Ap(D), a Bergman space

in the disk, is a function G that vanishes on Z, and satisfies ‖f/G‖Ap ≤ ‖f‖Ap for any f ∈ MZ .

Guided by this, we now make the following definition for a function space X in a multiply connected

domain.

Definition 4.2. Let Z be a X -zero set. We say that G ∈X is a quasi-contractive divisor if G ∈MZ

and there exists a constant CX ,G such that

‖f/G‖X ≤ CX ,G‖f‖X , f ∈MZ .

We now prove that H2(G) supports quasi-contractive divisors.

Theorem 4.3. Let Z = {zj}∞j=1 be an H2(G)-zero set and let µ be a non-positive measure with

µ ⊥ ωz0.
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There exist positive numbers {λj}nj=1 such that the inner function

G = BZ · Sµ,

with BZ and Sµ as in (5) and (6), satisfies

|G(ζ)|∣∣∣
γj

= eλj and 1 ≤ ‖G‖H2 ≤ eλj .

Moreover, if G0 = G/‖G‖H2(G) and cG = maxj=1,...,n λj, then 0 < cG <∞, and setting CG = ecG ,

we have

C−1
G ‖f‖H2(G) ≤ ‖G0f‖H2(G) ≤ CG‖f‖H2(G), f ∈ H2(G).

In particular, ‖f/G0‖H2 ≤ CG‖f‖H2 for any f ∈ [G].

As is the case for Theorem 4.1, Theorem 4.3 extends to Hp for p ≥ 1 (and even to p < 1) via

factorization techniques from [38, 39].

Proof. Recall that any inner function in H2(G) can be written as a product of a Blaschke product

and a singular inner function (and this is uniquely determined up to invertible factors) The existence

of an inner function G follows from the results of [39, Lemma 2], cf. Examples 2.2 and 2.3. The main

observation is that there exists a constant cG with the property that, for 0 < λj ≤ cG , j = 1, . . . , n,

the periods of
n∑
j=1

λj(ωj + iλ̃j)

around the boundary curves γk cover the set

C = {x ∈ Rn : 0 ≤ xj ≤ 2π, j = 1, . . . , n}.

This means that, given the zero set Z and the singular measure µ, we can construct a period

remover

Q(z) = exp

 n∑
j=1

λj (ωj + iω̃j)


with λ1, . . . , λn, 0 < λj < cG , selected in such a way that the function

G(z) = exp

− ∞∑
j=1

p(zj , z0)

 exp

[
1

2π

∫
Γ

(
∂g

∂nζ
(z, ζ) + i

∂g̃

∂nζ
(z, ζ)

)
dµ(ζ)

]
Q(z)

is single-valued and inner. Now, invoking standard results about Green-Stieltjes integrals, see [38],

we observe that

1 ≤ |G(ζ)| ≤ max
j
eλj ≤ ecG , for ω − a.e. ζ ∈ Γ.

Setting CG = ecG , we immediately obtain the first part of the statement.

To get the second part, note that CG ≥ ‖G‖H2(G) ≥ 1, meaning that 1/CG ≤ |G0(ζ)| ≤ CG on Γ.

The claimed norm inequality follows. �

Since the Bergman space A2(D) has contractive divisors, it is natural to ask whether there are

quasi-contractive divisors for A2(G). We have not been able to settle this question; instead, we will
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report on some hitherto unsuccessful attempts to make progress on this problem, and why there

are good reasons to believe that the problem might be challenging.

A natural starting point would be to consider the extremal problem (10), and to view solutions

as candidates for contractive or quasi-contractive divisors. However, as we have seen, the extremals

G have extraneous zeros, so that quotients f/G, where f ∈ MZ for some Bergman zero set Z,

become meromorphic in general. This obstruction was observed some time ago by Hedenmalm and

Zhu [32] in the context of weighted spaces in the disk as well as in multiply connected domains; see

also [57].

Nevertheless, it is conceivable that a modified construction could work. Let us restrict to the

case of a single zero for simplicity. First of all, recall from Section 3 that the problem

sup{Ref(z0) : f(z1) = 0, ‖f‖A2(G ≤ 1}, z1 ∈ G \ {z0}

gives rise to extremals of the form

G(z) = Bz1(z)k
|Bz1 |

2

z0 (z),

where Bz1 is a Blaschke factor with a single zero at z1 and constant modulus on the boundary

curves γj , and k
|Bz1 |

2

z0 is the normalized reproducing kernel at z0 for the weighted Bergman space

A2(|Bz1 |2dA,G), with norm furnished by

‖f‖2A2(|Bz1 |2) =

∫
G
|f(z)|2 |Bz1 |2dA(z).

Now, by Proposition 3.3, the kernel k
|Bz1 |

2

z0 has n − 1 zeros, and these zeros coincide with those of

the unweighted Bergman kernel Kz0 , which only depends on the underlying domain G. Let BG be

a Blaschke product formed from the zeros of Kz0 , and set

(20) G̃ = Bz1
k
|Bz1 |

2

z0

BG
.

The function G̃ is analytic in G, with the additional property that G̃(z1) = 0 and G̃(z) 6= 0 for

z ∈ G \ {z1}, and thus G̃ seems like a candidate to be a divisor. The same modification can be

performed for extremal functions associated with finite zero sets {z1, . . . , zn}. It is clear that there

are some issues here, however: we would then like to send n → ∞ to extend our construction to

infinite A2(G) zero sets. Unfortunately, infinite Blaschke products associated with Bergman zero

sets do not converge in general unless the zero set itself happens to be a Blaschke sequence, and

it is then not clear that modifications of the form above converge. Presumably, one would need

tight control over the interplay between weighted kernels and Blaschke products in order to obtain

convergent candidate divisors. In principle, one could also try

G̃† = Bz1
k
|Bz1 |

2

z0

kz0
,

where kz0 is the unweighted Bergman kernel at z0 ∈ G; the ratio of BG and kz0 is bounded above

and below for finite sets zeros, but one could imagine that one or the other of G̃ and G̃† might be

easier to work with in practice.
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Returning to the simplest case of a single zero and the function G̃ in (20), it is not at all clear

how to establish quasicontractivity. In the unit disk, the standard route to establishing that the

solution to the corresponding extremal problem is a contractive divisor is via the biharmonic Green’s

function [19, 21]. Ignoring the Blaschke factor Bz1 in the denominator of G̃ for a moment, recalling

the representation of the extremal G from (14), using the fact that H +
∑n

1 λjνj is harmonic, and

arguing as in the disk case, we find that∫
G

(
|G(z)|2 −H(z, z0)−

n−1∑
1

λjνj(z)

)
|f(w)|2dA(z)

=

∫∫
G×G

[
g∆2(z, w)∆(|G|2)(z)∆(|f |2)(w)

]
dA(z)dA(w) for f ∈ H∞(G).

Here, g∆2(z, w) is the biharmonic Green’s function for G, that is,{
∆2
zg∆2(z, w) = δw in G
g∆2 = ∇g∆2 = 0 on Γ

.

When G is the unit disk, one now uses subharmonicity along with the crucial fact that the biharmonic

Green’s function g∆2 for the disk is positive to finish the proof that G is a contractive divisor.

If G is a multiply connected domain, then g∆2 changes sign in general, and it is no longer readily

apparent that the right-hand side is non-negative. Nevertheless, it is conceivable that the integral

on the left is still non-negative, and this would leave a path to proving quasicontractivity. We have

not been able to advance along this route.

In conclusion, we pose a basic problem we cannot at present solve.

Problem 4.4. Consider the Bergman space A2(G) on a multiply connected domain G and fix a point

z1 ∈ G. Does there exist a function G and a constant CG , depending on CG but not on z1, such that

G(z1) = 0 and

‖f/G‖A2(G) ≤ CG‖f‖A2(G)

for every f ∈ A2(G) having f(z1) = 0?

In particular, do such a function and such a constant exist for the Bergman space of the annulus

G = {r < |z| < 1}?

The more general version of Problem 4.4 is the following.

Problem 4.5. Suppose G is a finitely connected domain bounded by analytic curves. Does Ap(G)

support quasicontractive divisors? That is, given an Ap(G) zero set Z, does there exist a function

G and a constant CG,p such that

‖f/G‖Ap(G) ≤ CG,p‖f‖Ap(G)

for every f ∈MZ?

Another possible way of attacking Problems 4.4 and 4.5 in A2(G) is via uniformization, briefly

alluded to in the Introduction. By our assumptions on the domain G, its universal covering space

can be identified with the unit disk D. If τ : D → G denotes the corresponding uniformizing map,
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we say that a conformal map m : D→ D is a deck transformation if τ ◦m = τ . The set of all deck

transformations form a group under composition, which we denote by Aut(τ).

Now let τ : D→ G be a uniformizing map, and consider the weighted Bergman spaceA2(D, |τ ′|2dA).

If we could establish the existence of quasicontractive divisors in this space, then we would be able

to transfer back to A2(G). For weighted Bergman spaces in the disk with logarithmically subhar-

monic weights, these questions have been addressed in a number of papers, see [31, 21, 57] and the

references therein. However, a significant obstruction manifests itself.

Problem 4.6. Suppose Z = {zj}∞j=1 is an A2(D, |τ ′|2dA)-zero set, automorphic with respect to

Aut(τ), the group of deck transformations corresponding to the uniformizing map τ . Let G be the

contractive divisor for A2(D) that is associated with Z.

Is G automorphic with respect to Aut(τ)?

We suspect the answer should be positive, but we do not have a proof.

Finally, we mention yet another approach to Problems 4.4 and 4.5 that involves reduction to

simply connected domains.

Problem 4.7. Let Z = {zj}∞j=1 be an A2(G)-zero set. Let A2(Ωj) be the Bergman space on the

simply connected domain Ωj ⊃ G bounded by γj .

Can we write Z =
⋃n
j=1Zj , where Zj ∩ Zk = ∅, and each Zj is an A2(Ωj)-zero set? If this were

the case, and if we let Gj denote the contractive zero divisor for A2(Ωj), then G =
∏n
j=1Gj would

solve Problem 4.5.

In order to resolve Problem 4.7, we should be able to answer the following question.

Problem 4.8. Can every f ∈ A2(G) be factored as

f =
n∏
j=1

fj , fj ∈ A2(Ωj)

where

cG‖f‖A2(G) ≤ ‖fj‖A2(Ωj) ≤ CG‖f‖A2(G)

for each j = 1, . . . , n, with 0 < cG ≤ CG <∞.

The corresponding problem for sums, that is, writing f =
∑n

j=1 gj with gj ∈ A2(Ωj) and

‖f‖A2(G) ∼ ‖gj‖A2(Ωj), can be seen to admit a solution by splitting the Cauchy integral formula for f

on a regular exhaustion of G =
⋃
j Ωj . See [18, 45, 48] for similar questions in the settings of Hardy

and Smirnov spaces. Problem 4.7 involves applying the Cauchy integral formula to logarithms that

are not single-valued. Nevertheless, we believe Problem 4.7 should admit a positive resolution.

5. Extension to rough domains and Riemann surfaces

The Hardy spaces Hp, p > 0, as well as the Nevanlinna and Smirnov classes N and N+, are defined

in terms of harmonic measures. Hence, they are conformally invariant, as are Schottky functions,

cf. [38]. Therefore, all the observations and results proved for these spaces can be extended mutatis

mutandis to finitely connected domains with arbitrary Jordan boundaries by using factorization

theorems as in [38].
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However, the case of the Smirnov spaces Ep, p > 0, is much more delicate. In domains with

smooth boundaries, or more generally, in domains such that the conformal map

ψ : G → K

of the given domain G onto a canonical circular domain satisfies

(21) 0 < c1 ≤ |ψ′(z)| ≤ c2 <∞

for some constants c1, c2, the Smirnov spaces Ep coincide with the Hardy spaces Hp as sets [18, 45].

Moreover, there is a simple isometric isomorphism of the form

f 7→ f(ψ′)1/p

between Hp(G) and Ep(G) provided by the Keldysh-Lavrentiev theorem (again, see [18, 45]). Thus,

Theorems 4.1 and 4.3 as well as Propositions 1-3 extend to n-connected domains G for which

condition (21) holds.

It should be noted that Ep-classes are of great importance in more general n-connected domains,

where the boundary is merely assumed to be comprised of rectifiable Jordan curves. The reason

is that by well-known generalizations of the F. and M. Riesz theorem [45, 18, 24], Ep-functions

(p ≥ 1) in such domains are still Cauchy integrals of functions in Lp(Γ, ds). One could therefore

argue that Ep spaces are “more natural” than their Hardy counterparts in domains with rectifiable

boundaries. However, in this generality, the situation is quite complicated.

An n-connected domain is said to be of Smirnov type if ψ′ ∈ N+, where ψ : G → K is a conformal

map as above; see [18, 37, 14, 15]. If G is a Smirnov domain, then R(G) is dense in each Ep,

p > 0, and moreover N ⊃ Hp for all p > 0, and hence the notion of an invariant subspace carries

over. Factorization theorems and the Theorems and Propositions in this paper also extend. Yet, in

domains not of Smirnov type, Ep 6⊂ N+ [38], and R(G) is never dense in Ep, p > 0. In fact, this

can be taken as an equivalent definition of Smirnov domains, going back to V.I. Smirnov himself

[18, 24]. Therefore, for a domain not of Smirnov type yet having a rectifiable boundary, it is not

clear how an “invariant subspace” should be defined. If one takes the easy way out, and defines

invariant subspaces in Ep as isomorphic images of invariant subspaces in Hp using the isomorphism

ψ, then again, all statements extend trivially.

Here is a more challenging question.

Problem 5.1. Find analogs of Theorems 4.1 and 4.3 for Ep(G)-spaces on non-Smirnov domains G.

We do not have a crisp conjecture in mind, but it appears likely that the singular factor of ψ′

would play a significant role.

There is another delicate point for domains of connectivity n > 1. Namely, suppose that some

boundary components in Γ =
⋃n
j=1 γj are smooth, while others are “rough”—can one formulate

reasonable analogs of Theorem 4.1 and 4.3 in that setting? For instance, suppose Γ = γ1 ∪ T with

int(γ1) being a non-Smirnov domain, for instance, a “pseudocircle” [18].

For the Bergman spaces Ap, it is known that Theorem 4.1 fails for general invariant subspaces,

even in the unit disk [21, 31]. However, the analog of Theorem 4.1 does hold for zero-based invariant

subspaces in the disk: for p = 2 this is due to Hedenmalm [29], and to Duren, Khavinson, Shapiro,
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and Sundberg for general exponents [19]. This reduced version of Beurling’s theorem, as well as

the analog of Theorem 4.3 extends to simply connected domains for which (21) holds. This is

also true for simply connected domains having strictly positive harmonic reproducing kernel and

non-negative biharmonic Green’s function. See [20, Theorem 3], and the remarks that follow, for

details.

Now, as we mentioned earlier, it is an open problem to construct even one-point quasicontractive

divisors in multiply connected domains with analytic boundaries. Relaxing boundary smoothness

but decreasing connectivity, we can pose the following problem.

Problem 5.2. Suppose G is a simply connected domain with rough boundary Γ. (For instance,

suppose G is such that (21) is violated for a conformal map onto the disk). Does Ap(G) support

quasicontractive divisors?

Next, we turn to finite Riemann surfaces with smooth boundaries. In this setting, S.Ya. Khavin-

son [42, 43] has developed factorization techniques that should in principle allow Theorems 4.1 and

4.3 to be extended. To work out the technical details nevertheless seems challenging, as one needs to

differentiate between removing periods around boundary components and removing periods around

handles. We believe that it is a worthy task to prove extensions of Theorems 4.1 and 4.3 for Riemann

surfaces rigorously.

Finally, one might consider potential analogs of Theorems 4.1 and 4.3 for Hardy and Bergman

spaces in infinitely connected domains or on Riemann surfaces of infinite genus. A natural starting

point here might be the so-called Parreau-Widom domains; see [33, 50, 58]. Virtually nothing is

known in this setting, and Hp-factorization involving single-valued zero divisors is not currently

available. In general domains or Riemann surfaces, criteria for Hp or Ap to be non-trivial, in the

sense of containing non-constant functions, differ quite substantially for different values of p, see

[10, 34, 27, 28, 30, 9], making this type of endeavor potentially quite complicated but also rewarding.
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